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a b s t r a c t

Competitive intransitivity occurs when species’ competitive abilities cannot be listed in a strict

hierarchy, but rather form competitive loops, as in the game ‘Rock–Paper–Scissors’. Indices are useful for

summarizing intransitivity in communities; however, as with most indices, a great deal of information

is compressed into single number. So while recent ecological theory, experiments, and natural history

observations demonstrate that competitive intransitivity can promote species coexistence, the

consequence of variation in the ‘topology’ of competitive interactions that is not accounted for by

intransitivity indices is much less well understood. We use a continuous analytical model and two

complementary discrete lattice models (one spatially explicit, the other aspatial) to demonstrate that

such variation does indeed greatly affect species coexistence. Specifically, we show that although

intransitivity indices are good at capturing broad patterns of coexistence, communities with different

levels of intransitivity can have equal coexistence, and communities with equal intransitivity can have

different coexistence, due to underlying variation in competitive network topology.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Intransitive competition can be described most easily using the
simple analogy of the ‘Rock–Paper–Scissors’ game in which three
strategies compete and each strategy is dominant to just one
other: Rock smashes Scissors, Scissors cuts Paper, and Paper
covers Rock. This is in contrast to hierarchical or completely
transitive competition, which occurs if Scissors cuts Paper, but
contrary to the game’s tradition, yet perhaps more realistically,
Rock smashes both Scissors and Paper. Numerous theoretical
models have demonstrated that transitive competition quickly
leads to a monoculture of the best competitor (e.g., Rock in the
above transitive competition example), while intransitive compe-
tition contributes to greater coexistence (Czárán et al., 2002;
Durrett and Levin, 1994, 1998; Gilpin, 1975; Huisman et al., 2001;
Huisman and Weissing, 1999, 2001a, b; Kerr et al., 2002; Laird and
Schamp, 2006, 2008; May and Leonard, 1975; Reichenbach et al.,
2007; Szabó et al., 2004; Tainaka, 1988). Thus, intransitivity is a
potential mechanism by which competition itself can promote
coexistence—in contrast to most coexistence theories which
require that competition be mitigated (Chesson, 2000; Huston,
1994; Tokeshi, 1999).
ll rights reserved.
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Furthermore, intransitivity has been identified for a wide
variety of taxonomic groups, including plants (e.g., Lankau and
Strauss, 2007; Shipley, 1993; Taylor and Aarssen, 1990), sessile
marine organisms such as bryozoans, ascidians, cnidarians,
sponges, and coralline algae (Buss, 1980, 1990; Buss and Jackson,
1979; Jackson, 1983), bacteria (Kerr et al., 2002), and mating
strategies in lizards (Sinervo and Lively, 1996; Sinervo et al., 2007).
Therefore, intransitive competition may be an important biologi-
cal mechanism promoting genetic, species, and behavioral
diversity in natural systems.

Competition is simplified in three-species models because only
completely intransitive or completely transitive competition is
possible (e.g., Durrett and Levin, 1994, 1998; Gilpin, 1975; Kerr
et al., 2002; May and Leonard, 1975). However, competitive inter-
relationships can be increasingly complex as more species are
considered (e.g., Huisman et al., 2001; Huisman and Weissing,
1999, 2001a, b; Karlson and Jackson, 1981; Laird and Schamp,
2006, 2008). For example, increasing the number of competing
species also increases the number of different levels of intransi-
tivity that are possible in a community of competitors (e.g., Laird
and Schamp, 2008; Petraitis, 1979). This is true because an
intransitive loop requires at least three species (as in Rock–
Paper–Scissors), and with more than three species, it is possible to
have multiple intransitive loops. Hence, indices of intransitivity
(e.g., Bezembinder, 1981; Kendall and Babington Smith, 1940;
Laird and Schamp, 2006, 2008; Petraitis, 1979; Slater, 1961),
become increasingly continuous as the number of species
increases. Moreover, theoretical models have revealed that these
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indices are powerful predictors of species coexistence (Laird and
Schamp, 2006, 2008).

One drawback of intransitivity indices, however, is that they
abstract a great deal of information regarding competitive
relationships among community members (i.e., ‘competitive
topologies’) into a single number. This is because the number of
possible competitive topologies increases at a much faster rate
than the number of species, and hence the number of possible
levels of intransitivity (Electronic Supplementary Material 1).
Topological variation that is not fully accounted for by intransi-
tivity indices can be visualized by noting that assemblages with
equal intransitivity can have different topologies (Fig. 1). Im-
portantly, topological variation that is not accounted for by
indices of intransitivity can impact coexistence (e.g., see the
discussion of ‘pathway number’ in Laird and Schamp, 2006). In
this paper, we use a continuous mean-field model as well as
discrete spatial and aspatial lattice models, to demonstrate that
although intransitivity indices are good predictors of broad
patterns of coexistence, unexplored variation in competition
matrix topology influences coexistence for five competing species.
2. Methods

2.1. Tournament matrices

‘Tournament matrices’ describe the competitive relationships
for all pairs of species in a community. They are similar to the
‘competitive outcomes matrices’ discussed in Laird and Schamp
Fig. 1. The twelve unique interaction web diagrams and tournament matrices for five

Table 1, the example mean-field predictions in Fig. 2, and the x-axes of Fig. 3. Species a

edges (arrows). Arrows point from competitive dominant to subordinate (e.g., �-J mea

the white node). An example tournament matrix is given for each interaction web: a ‘1’

species outcompetes the row species, and a colour ‘0’ is given when row ¼ column (the

furthermore, their colours match up with the species in Fig. 2). (a) The ‘hierarchical’ case

sp ¼ 0; Petraitis, 1979). (b) The six unique manifestations of the ‘moderately intransitive

have to be reversed to convert these networks into the hierarchy given in (a) (for (bi)–(bi

there are two other hierarchies that are equally close–not shown). (c) The four unique m

the same as in (b) (for (ci), the hierarchy in (a) is the only hierarchy within a single rever

close hierarchies—not shown). (d) The ‘perfectly intransitive’ case (t ¼ 0, sp ¼ 3). Wh

hierarchies–not shown). All other five-species tournament matrices are reconfigurations

number of reversals needed to convert a tournament to a hierarchy (sp), divided by th

communities, MAX(sp) ¼ M ¼ 3; see Table 1).
(2006, 2008). A tournament matrix for s species has dimensions of
s rows by s columns. If the species denoted by row i outcompetes
the species denoted by column j, position (i, j) is filled with a ‘1’.
Conversely, if the species denoted by row i is outcompeted by the
species denoted by column j, position (i, j) is filled with a ‘�1’. If
i ¼ j, position (i, j) is filled with a ‘0’.

The number of possible tournament matrices increases
explosively with the number of species. However, many of these
are topologically equivalent (i.e., they are identical unlabeled
graphs in the context of graph theory). For instance, the following
two matrices are equivalent representations of Rock–Paper–Scis-
sors (‘R–P–S’) competition:

0 �1 1

1 0 �1

�1 1 0

�

0 1 �1

�1 0 1

1 �1 0

The left-hand matrix’s rows and columns can be ordered R–P–S,
P–S–R, or S–R–P, whereas the right-hand matrix’s rows and
columns can be ordered R–S–P, S–P–R, or P–R–S. The matrices are
equivalent because one can be converted to another by a simple
re-ordering of the rows and columns. Notwithstanding the
redundancy of tournament matrices, there are still a huge number
of unique tournament matrices as s becomes large (Goldberg and
Moon, 1970). For example, while there are only two unique three-
species tournaments (e.g., the traditional and modified Rock–
Paper–Scissors games described in Section 1), there are 456
seven-species tournament matrices, and close to a million-billion-
trillion 17-species tournament matrices (Electronic Supplemen-
tary Material 1).
-species communities. Panel names correspond with the ‘tournament names’ in

re shown as nodes (circles) and their pair-wise competitive relations are shown as

ns that the species denoted by the black node outcompetes the species denoted by

means the row species outcompetes the column species, a ‘�1’ means the column

0s also provide the row and column corresponding to the node of the same colour;

(Petraitis’ t ¼ 1, minimum number of reversals to convert the matrix to a hierarchy

’ case (t ¼ 2
3, sp ¼ 1). White arrowheads denote the competitive relations that would

ii), the hierarchy in (a) is the only hierarchy within a single reversal; for (biv)–(bvi),

anifestations of the ‘strongly intransitive’ case (t ¼ 1
3, sp ¼ 2). White arrow heads are

sal; for (cii), (ciii), and (civ), there are, respectively, one, two, and four other equally

ite arrowheads are the same as in (b) and (c) (there are four other equally close

of the twelve shown here. Note that Petraitis’ t is equal to one minus the minimum

e maximum possible value of sp for communities of a given size (for five-species
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In this study, we focus on five-species competition. Five-
species competition includes four levels of intransitivity (as
measured by the index t; Petraitis, 1979; Table 1). However, there
are 12 unique tournament matrices, examples of which are shown
in Fig. 1 (see Table 1 for a summary of the properties of the 12
matrices). Focusing on five-species competition allows us to
investigate the consequences of different tournament matrix
topologies while keeping analyses tractable.
2.2. Mean-field model

We investigated a multi-species extension of Frean and
Abraham’s (2001) mean-field model of Rock–Paper–Scissors
competition (also see Durrett and Levin, 1994). The mean-field
model tracks the proportions of competing species assuming that:
(1) there are a large number of individuals competing, and (2)
contact rates between members of the competing species follow a
mass-action rule (i.e., the communities are well-mixed with no
spatial structure). The rates of change of the proportions of all
species i are given by the simultaneous differential equations

dxi

dt
¼
Xs

j¼1

Tði; jÞxixj for i ¼ 1;2; . . . ; s (1)

where xi and xj are the proportions of species i and j, respectively, s

is the number of species (s ¼ 5 in our analyses), and T is the
tournament matrix (i.e., T(i, j) ¼ 1 if species i outcompetes species
j, T(i, j) ¼ �1 if species j outcompetes species i, and T(i, j) ¼ 0 if
i ¼ j). We examined the dynamics for each of the twelve unique
tournament matrices for five-species competition (Fig. 1). We
generally used equal initial relative abundances of [0.2, 0.2, 0.2,
0.2, 0.2], although other starting conditions were also investi-
gated.
Table 1
Characteristics of the twelve unique tournament matrices for five-species competition,

tournament matrix into a hierarchy

Tournament name sp
a tb Relative intransitivityc rd

a 0 1 0 0

bi 1 2
3

0.6 6

bii 1 2
3

0.4 3

biii 1 2
3

0.4 3

biv 1 2
3

0.2 1

bv 1 2
3

0.2 1

bvi 1 2
3

0.2 1

ci 2 1
3

0.8 6

cii 2 1
3

0.8 6

ciii 2 1
3

0.8 6

civ 2 1
3

0.6 6

d 3 ¼ M 0 1 6

Tournament names correspond with the panels of Figs. 1 and 2, and the x-axes of Fig. 3

the ‘pathway number’ and ‘score sequence’ of each tournament. ‘Predicted richness’ is t

term coexistence (e.g., Fig. 2).
a sp is equal to Slater’s i, the minimum number of competitive reversals required

1961).
b Petraitis’ t ¼ 1–sp/M, where M is the maximum minimum number of competitiv

hierarchy (Petraitis 1979). In five-species tournaments, M ¼ 3.
c Relative intransitivity (Laird and Schamp, 2008) is equal to 1–relative variance (Lai

Kendall and Babington Smith’s coefficient of consistence; Kendall and Babington Smith
d Bezembinder’s r is the rank of the ‘cycle matrix’ (Bezembinder, 1981).
e Bezembinder’s d is the proportion of pairwise competitive outcomes that are em
f Pathway number is the number of different hierarchies within sp competitive reve

Slater’s j (Slater, 1961).
g Score sequence is the number of competitors that each species outcompetes, rep
2.3. Lattice models

The lattice models are described in detail in Laird and Schamp
(2006, 2008). Briefly, five-species communities were seeded
randomly and independently on a 100�100 cell lattice with
periodic boundaries. Initially, the probability of each cell being
occupied by a given species was equal to 0.2. During each time
step, a focal cell was chosen at random and the individual
occupying it competed either against its eight nearest neighbors
in its 3�3 cell neighborhood (i.e., ‘local competition’), or against
eight other individuals chosen randomly from the lattice
(i.e., ‘global competition’). If one of these eight competitors was
competitively dominant to the focal individual, the focal indivi-
dual was replaced by a new individual of the superior competitor.
If more than one of the eight competitors was dominant,
replacement was random and proportional to the relative
abundance of the superior competitors (i.e., their relative
abundance among the eight competitors, not in the lattice at
large). Ten-thousand competition events were defined as one
generation, so that on average, every cell served as the focal cell
once per generation. For each of the twelve unique tournament
matrices for five-species competition (Fig. 1), we ran 50 global and
50 local model replicates. For each replicate, we recorded short-
term coexistence (defined as the number of generations until the
first extinction) and long-term coexistence (defined as the
number of species remaining after 500 model generations).
3. Results and discussion

3.1. Mean-field model

The mean-field model results show that for some five-species
tournament matrices, no coexistence is possible, and communities
sorted by sp, the minimum number of competitive reversals required to change the

de Pathway numberf Score sequenceg Predicted richness

0 1 {0, 1, 2, 3, 4} 1

1 1 {1, 1, 2, 3, 3} 3

0.6 1 {0, 2, 2, 3, 3} 3

0.6 1 {1, 1, 2, 2, 4} 1

0.3 3 {0, 2, 2, 2, 4} 1

0.3 3 {0, 1, 3, 3, 3} 3

0.3 3 {1, 1, 1, 3, 4} 1

1 1 {1, 2, 2, 2, 3} 3

1 2 {1, 2, 2, 2, 3} 3

1 3 {1, 2, 2, 2, 3} 5

1 5 {1, 1, 2, 3, 3} 3

1 5 {2, 2, 2, 2, 2} 5

. Four indices of intransitivity are given: t, relative intransitivity, r and d, as well as

he number of species predicted by mean-field approximations to experience long-

to change the tournament matrix into a hierarchy (sp: Petraitis, 1979; i: Slater,

e reversals required to change a tournament of a given number of species into a

rd and Schamp, 2006). Additionally, relative intransitivity is equal to 1–z (where z is

, 1940).

bedded in a cycle (Bezembinder, 1981).

rsals of a given tournament (Laird and Schamp, 2006). Pathway number is equal to

orted in ascending order.
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quickly become monocultures (e.g., Fig. 2a). However, for other
tournament matrices three- or even five-species coexistence is
possible (e.g., three species: Fig. 2bi, bv, ci; five species: Fig. 2ciii, d).
The full results of the predicted long-term coexistence for
communities in which all five species start with a relative
abundance of 0.2 are given in Table 1. Although intransitivity
indices are excellent predictors of species coexistence (Laird and
Schamp, 2006, 2008), there is still unexplained variation in
coexistence. For example, of the six possible ‘moderately intransi-
tive’ tournament matrices for which Petraitis’ (1979) index of
intransitivity t ¼ 2

3, three matrices result in three-species coex-
istence (Table 1bi, bii, bv), while the other three result in
monocultures (Table 1biii, biv, bvi). Moreover, it is possible to have
equal coexistence in competitive communities with different levels
of intransitivity. For example, communities that descend to
monoculture include not only the hierarchical case (Table 1a), but
also half of the communities for which t ¼ 2

3. Additionally,
communities that support three coexisting species are split
between those with t ¼ 2

3 (Table 1bi, bii, bv) and t ¼ 1
3 (Table 1ci,

cii, civ). Thus, the mean-field model results demonstrate that the
fine details of competitive topologies can be very important in
determining species coexistence when interactions are global, such
as in well-mixed aquatic communities (Huisman et al., 2001).

Importantly, other indices such as relative intransitivity (Laird
and Schamp, 2008), which is equivalent to 1�z (Kendall and
Babington Smith, 1940), r and d (Bezembinder, 1981), and
pathway number (Laird and Schamp, 2006), which is equivalent
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Fig. 2. Mean-field model predictions for six of the twelve unique five-species competit

Table 1 and the tournament matrices in Fig. 1. Line colors match the colors of species in F

with starting conditions of [0.2, 0.2, 0.2, 0.2, 0.2]. Insets show that oscillatory dynamics a

show the dynamics when the starting conditions are [0.1, 0.2, 0.2, 0.2, 0.3]. Species nam
to Slater’s j (Slater, 1961), were also unable to explain all of the
observed variation in coexistence for five-species tournament
matrices (see Table 1). This further supports our conclusion that
topological variation in competition external to intransitivity can
contribute to patterns of coexistence.
3.2. Lattice models

Electronic Supplementary Materials 2 and 3 show example
lattice model runs for the same six tournament matrices that are
shown in Fig. 2. Generally, the dynamics are similar to the mean-
field model results, in that the same species coexist and the same
species go extinct. However, a major difference between the
mean-field results and the lattice model results is that the
oscillations that are observed in the mean-field model are
strongly suppressed in the lattice models. In our lattice models,
the focal competitor interacts with eight other competitors, and
thus has as many as eight chances of being replaced per
competition event, while in the mean-field model competition
events effectively occur within pairs of individuals (i.e., one
chance of replacement per competition event; Frean and Abra-
ham, 2001). Hence, fluctuations in abundance are dampened in
the lattice models relative to the mean-field model.

A summary of the results of the lattice models is shown in
Fig. 3. The results of global and local competition are the same in
terms of long-term coexistence (i.e., number of species remaining
0.0
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Fig. 3. Lattice model results for the twelve unique tournament matrices for five species. Labels in the x-axes correspond with the ‘tournament names’ in Table 1 and the

tournament matrices described in Fig. 1. Bars represent the means of 50 model runs. Similarly shaded bars represent tournament matrices of equal intransitivity as

measured with Petraitis’ index (1979) (see Table 1). Error bars represent 1 SEM (bars without error bars had no variation). The four panels show short-term coexistence

(number of generations until first extinction; top row) and long-term coexistence (number of species remaining after 500 model generations; bottom row) for global

competition (left column) and local competition (right column). Note that the outcome of the mean-field model correctly predicted long-term species coexistence in both

global and local competition (compare the results in the bottom row with the last column of Table 1).
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after 500 generations; Fig. 3: bottom row). Further, the mean-field
model correctly predicts the number of species that experience
long-term coexistence in both lattice models (compare the bottom

row of Fig. 3 with the leftmost column of Table 1). However, for
some tournament matrix topologies, global competition leads to
slightly greater short-term coexistence (i.e., more generations
passed until the first extinction event; Fig. 3: top row: bi, ci, cii), a
trend that is reversed when more than five species are included in
the analysis (Laird and Schamp, 2008).

Thus, the lattice model results confirm the mean-field model
results: in local and global competition, unexplained variation in
competitive topology is important in determining short- and
long-term species coexistence.
4. Conclusions

Our results show that topological variation in competitive
tournaments that is not captured by intransitivity indices can affect
species coexistence in competitive communities. Therefore, the
number of reversals in a competitive tournament matrix, which is
closely related to intransitivity indices, while important, misses
important variation related to reversal location within tournament
matrices. Specifically, communities with different levels of intran-
sitivity can have equal coexistence, and communities with equal
intransitivity can have different coexistence. This conclusion is
independent of the particular intransitivity index being used.

Our findings have important implications for biological
systems, especially those in which intransitive competitive
relationships have been identified (e.g., Buss, 1980, 1990; Buss
and Jackson, 1979; Jackson, 1983; Kerr et al., 2002; Lankau and
Strauss, 2007; Shipley, 1993; Sinervo and Lively, 1996; Sinervo et
al., 2007; Taylor and Aarssen, 1990). Except for the hierarchical
case, all topological variation that we explore results from at least
some groups of species within a community interacting intransi-
tively. Thus, identifying variation in competitive tournament
matrix topology will require the same empirical approach used
to identify intransitivity (i.e., determining the competitive out-
comes within all species pairs in a community). It is clear from our
results that competitive topologies can vary in their impact on
species coexistence over and above how they are summarized by
indices of intransitivity. Thus, the details of which species form
intransitive loops—and not merely how many do—will be
important in understanding the potential contribution of compe-
titive interactions to sustained coexistence.
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